
A Denotational Engineering

of Programming Languages
…

Part 9: Lingua-2V Syntax and semantics

(Section 8.1 – 8.4 of the book)

Andrzej Jacek Blikle

May 27th, 2021

May 27, 2021 A.Blikle - Denotational Engineering; part 9 (26) 2

Denotational Engineering

of Programming Languages

Designing languages with

denotational semantics

Deriving correct programs in

languages with denotational

semantics

May 27, 2021 A.Blikle - Denotational Engineering; part 9 (26) 3

Validating programming

A metaprogram consists of two mutually nested (interleaved) layers:

- programming layer ─ a program in the usual sense,

- descriptive layer ─ pre- and post-conditions

assertions “nested” in-between instructions

A metaprogram is said to be correct if its programming layer is

cleanly totally correct wrt its pre- and post-condition.

Validating programming (program development)

proved program program 1 program 2

sound

construction rules

The process of program development preserves

correctness but may change functionality!

May 27, 2021 A.Blikle - Denotational Engineering; part 9 (26) 4

The syntax

and

the semantics

of Lingua-2V

May 27, 2021 A.Blikle - Denotational Engineering; part 9 (26) 5

A validating language

1. Conditions ― denotations are three-valued partial predicates on states.

2. Specified instructions/programs ― denotations are partial functions on

states and the descriptive layer describes the properties of the

programming layer.

3. Propositions ― denotations are classical Boolean values tt and ff;

propositions are split into three subcategories: (tezy)

a. properties that express syntactic properties of programs, e.g. that a

given procedure declaration appears in program's declaration,

b. metaconditions that express the semantic properties of conditions,

e.g. that one condition is satisfied iff another is satisfied as well,

c. metaprograms that express total-correctness properties of

programs which they include.

Lingua-nV = Lingua-n + descriptive layer

In building Lingua-Vn from Lingua-n we proceed from syntax to denotations.

May 27, 2021 A.Blikle - Denotational Engineering; part 9 (26) 6

Conditions
Auxiliary notations (v – value)

vt = (tt, ((‘Boolean’), TT))

vf = (ff, ((‘Boolean’), TT))

con : Condition =

basic conditions

DatCon | data-oriented conditions

DecCon | declaration-oriented conditions

SpecInstruction @ Condition | algorithmic conditions

composed conditions

(Condition and Condition) | (Condition or Condition) | (not Condition) |

(∀ Identifier: Condition) | (∃ Identifier: Condition)

Sco : Condition ⟼ State → ValueE semantics of conditions

Notation:

[con] = Sco.[con]

{con} = {sta | [con].sta = vt}

May 27, 2021 A.Blikle - Denotational Engineering; part 9 (26) 7

Data-oriented conditions
Data-oriented conditions:

1. Boolean data-expressions of Lingua,

2. extended Boolean data-expressions referring to value-constructors which
are not available in the source language e.g. sorted-list or

dae-1 = dae-2 for arbitrary data expressions.

McCarthy's logical connectives and Klenee's quantifiers

∀ : Identifier x Condition ⟼ Condition

[(∀ide: con)].sta =

is-error.sta ➔ error.sta

let

(env, (vat, ‘OK’)) = sta
for every val : Value, [con].(env, (vat[ide/val], ‘OK’)) = vt ➔ vt

there is val : Value, [con].(env, (vat[ide/val], ‘OK’)) = vf ➔ vf

true ➔ ‘never-false’

vt, err, ? (? needs not be computable)

regarded as an error message

∀x:2 x≥0

∀x:x2≥0
∀x:2 x <0

May 27, 2021 A.Blikle - Denotational Engineering; part 9 (26) 8

Data-oriented conditions (cont.)

∃ : Identifier x Condition ⟼ Condition
[(∃ide:con)].sta =

is-error.sta ➔ error.sta

let

(env, (vat, ‘OK’)) = sta
there is val : Value, [con].(env, (vat[ide/val], ‘OK’)) = vt ➔ vt

for every val : Value, [con].(env, (vat[ide/val], ‘OK’)) = vf ➔ vf

true ➔ ‘never-true’

[(∀ide: con)].sta = vf even if sometimes error

[(∃ide: con)].sta = vt even if sometimes error

∃x:2 x ≥0
∃x:x2<0

∃x:2 x <0

May 27, 2021 A.Blikle - Denotational Engineering; part 9 (26) 9

Declaration-oriented conditions

is-free(ide) – ide is not declared

ide is tex – ide is declared as a variable of type defined by tex

e.g.:

length is real

employee is

record-type

c-name as word,

f-name as word

ee

conformant(fpa-v, fpa-r, apa-v, apa-r)

– list of parameters are dynamically compatible

ide is-type tex – ide is declared as a type constant of type defined

by tex

May 27, 2021 A.Blikle - Denotational Engineering; part 9 (26) 10

Declaration-oriented conditions (cont.)

[ide proc-with ipd].sta = vt

iff

(1) sta does not carry an error

(2) ipd is a declaration of ide, i.e. is of the form

proc ide (val ForPar ref ForPar) Program endproc,

(3) there exists sta-ini, such that sta = Sipd.[ipd].sta-ini

otherwise

[ide proc-with ipd].sta = vf

ide is bound in sta to a procedure whose declaration is ipd

Analogous for functional procedures:

ide fun-with fpd

May 27, 2021 A.Blikle - Denotational Engineering; part 9 (26) 11

Algorithmic conditions

dec ; sin @ con ─ syntax

[dec ; sin @ con] = Sde.[dec] ● Ssi.[sin] ● {con} ─ semantics

specified instruction (see later)

Banachowski Lech, Kreczmar Antoni, Mirkowska Grażyna, Rasiowa Helena,

Salwicki Andrzej, An introduction to Algorithmic Logic ― Metamathematical

Investigations of Theory of Programs, T. 2: Banach Center Publications.

Warszawa PWN, 1977, s. 7-99, series: Banach Center Publications, vol.2

possibly algorithmic

sin @ con is the weakest precondtion which guarantees that sin

terminates and the terminal state satisfies con.

E.g. x:=x+1 @ x>1

http://lem12.uksw.edu.pl/images/4/42/Bcp211.pdf

May 27, 2021 A.Blikle - Denotational Engineering; part 9 (26) 12

Specified instructions

sin : SpecInstruction =

Instruction |

asr Condition rsa |

if DatExp then SpecInstruction else SpecInstruction fi |

if-error DatExp then SpecInstruction fi |

while DatExp do SpecInstruction od |

SpecInstruction ; SpecInstruction

Ssi : SpecInstruction ⟼ State → State

Ssi.[asr con rsa].sta =

is-error.sta ➔ sta

[con].sta = ? ➔ ?

[con].sta =vt ➔ sta

true ➔ sta ◄ ‘assertion-not-satisfied’
ff or error

in all other cases semantic

clauses are as in Lingua-2

May 27, 2021 A.Blikle - Denotational Engineering; part 9 (26) 13

Specified instructions (cont.)
Two special colloquialisms

asr con: sin rsa

off sin asr

Insert asr con rsa between any two atomic instructions.

Remove all assertions from sin.

See the corresponding restoring transformation in Sec. 8.3 of the book.

May 27, 2021 A.Blikle - Denotational Engineering; part 9 (26) 14

Propositions

syntactic propositions ― describe properties of the syntax of programs

metaconditions ― describe semantic properties of conditions

metainstructions ― describe semantic properties of instructions

metaprograms ― describe semantic properties of programs

Propositions evaluate to tt or ff

When we talk about properties of programs

we remain in classical logic.

Tezy

A

May 27, 2021 A.Blikle - Denotational Engineering; part 9 (26) 15

Syntactic propositions

IS-CORRECT(dec) ― no identifier declared twice in dec,

ide DEC-AS-PRO ipd IN dec ― ide is declared by ipd in dec

ide DEC-AS-FUN fpd IN dec ― ide is declared by ipf in dec

ide NOT-IN dec ― ide has not been declared in dec

dec-1 SEPARATED-FROM dec-2― the sets of identifiers declared in dec-1

and dec-2 are disjoint.

Note the difference with
[ide proc-with ipd

May 27, 2021 A.Blikle - Denotational Engineering; part 9 (26) 16

Metaconditions

Metaconditions describe such properties of conditions that refer to their

denotations.

Metaconditions do not belong to the syntax of Lingua-2V. They belong to the

syntax of MetaSoft.

 , ⊑ ,  , ≡ : Condition x Condition ⟼ Proposition ─ metapredicates

DEFINITIONS

con-1  con-2 iff {con-1} ⊆ {con-2} stronger/weaker than(metaimplication)

con-1 ⊑ con-2 iff [con-1] ⊆ [con-2] less/more defined than

con-1 con-2 iff {con-1} = {con-2} weakly equivalent

con-1 ≡ con-2 iff [con-1] = [con-2] strongly equivalent

SOME PROPERTIES

con-1 ≡ con-2 is equivalent to (con-1 ⊑ con-2 and con-2 ⊑ con-1)

con-1 con-2 is equivalent to (con-1 con-2 and con-2 con-1)

con-1 con-2 implies con-1 con-2

{con} = {sta : [con].sta = vt}

May 27, 2021 A.Blikle - Denotational Engineering; part 9 (26) 17

Metaconditions (cont.)

pre  ins @ post ― clean total correctness (for deterministic ins)

con  ins @ con ― strong invariant of ins

x>0 and
2 𝑥 > 2 ≡ x > 4
2 𝑥 > 2  x > 4 but ≡ does not hold
2 𝑥 < 2 ⊑ x < 4 but neither ≡ nor holds
2 𝑥 > 4  x > 3 but neither  nor ⊑ holds

May 27, 2021 A.Blikle - Denotational Engineering; part 9 (26) 18

Metaimplication versus implication
Three logical levels

implies : Condition x Condition ⟼ Condition - syntactic constructor

 : Condition x Condition ⟼ {tt, ff} - metaimplication

implies : {tt, ff} x {tt, ff} ⟼ {tt, ff} - MetaSoft implication

2 𝑥 > 4  x > 3 but 2 𝑥 > 4 implies x > 3 is undefined for x < 0

(con-1 implies con-2) ≡ TT implies con-1 con-2

The converse implication is not true.

Lingua-2VLingua MetaSoft

May 27, 2021 A.Blikle - Denotational Engineering; part 9 (26) 19

Equivalence and congruence

≈ ⊆ A x A ― equivalence relation

a ≈ a ― reflexive

a ≈ b then b ≈ a ― symmetric

a ≈ b and b ≈ c then a ≈ c ― transitive

≈ ⊆ A x A ― congruence relations wrt F : An → A

ai ≈ bi for i = 1;n implies F.(a1,…,an) ≈ F.(b1,…,bn)

May 27, 2021 A.Blikle - Denotational Engineering; part 9 (26) 20

Metaconditions (cont.)
Some properties of ≡ and .

Lemma 8.4.2-1 Relations ≡ and  are both equivalences.

Lemma 8.4.2-2 Strong equivalence is a congruence wrt and, or and not,

Lemma 8.4.2-3 Weak equivalence is a congruence wrt and and or.

Weak equivalence is not a congruence wrt not.
2 𝑥 > 2  x > 4 is satisfied but
2 𝑥 ≤ 2  x ≤ 4 is not (x = -1)

Lemma 8.4.2-4 The operators and and or are strongly and (of course also

weakly) associative.

Lemma 8.4.2-7 The de Morgan’s laws for and, or and for the negation of

quantifiers are satisfied with strong equivalence

Lemma 8.4.2-8 Conjunction is weakly commutative.

May 27, 2021 A.Blikle - Denotational Engineering; part 9 (26) 21

Metaconditions (cont.)
Contextual metaconditions

DEFINITIONS

con-1 ≡ con-2 whenever con means con and con-1 ≡ con and con-2

con-1 con-2 whenever con means con and con-1 con and con-2

EXAMPLES

n > x2 ≡ 2 𝑛 > x whenever (n ≥ 0 and x ≥ 0)

n > x2 
2 𝑛 > x whenever x ≥ 0

May 27, 2021 A.Blikle - Denotational Engineering; part 9 (26) 22

Metainstructions

Just one (so far):

if dat then sin fi limited-replicability in con

satisfied iff

[{dat}] Ssi.[sin] has limited replicability in {con}.

May 27, 2021 A.Blikle - Denotational Engineering; part 9 (26) 23

Metaprograms

mpr : MetaProgram =

pre Condition :

Declaration ;

SpecInstruction

post Condition

Smp : MetaProgram ⟼ {tt, ff}

Sde.[pre prc : dec ; sin post poc] = tt

iff (def)

{prc} ⊆ Sde.[dec] ● Ssi.[sin] ● {poc} i.e.

prc  dec ; sin @ poc

A metaprogram mpr is said to be correct if Smp[mpr] = tt.

Total correctness with

clean termination.

Correctness of a metaprogram implies that for every execution
that starts in {prc}:

1. dec, sin, poc do not generate an error,

2. all states of the execution are adequate for dec,

3. all assertions in sin are satisfied,

4. program terminates and terminal state does not carry an error.

These facts

are implicite in

correctnerss

May 27, 2021 A.Blikle - Denotational Engineering; part 9 (26) 24

Metaprograms
Correctness-preserving replacements in metaprograms

Weakly equivalent conditions in:

- preconditions,

- postconditions,

- assertions.

Weaker defined by stronger defined dae-1 ⊑ dae-2, in:

- Boolean expressions,

- assertions.

In the sequel whenever we write

pre con-pr : dec;sin post con-po

we mean that

Smp[pre con-pr : dec;sin post con-po] = tt

May 27, 2021 A.Blikle - Denotational Engineering; part 9 (26) 25

Clean evaluations of expressions

DEF. A data expression dae evaluates cleanly under condition con, if

con  dae=dae

An equality from

descriptive level of

Lingua-V.

May 27, 2021 26A.Blikle - Denotational Engineering; part 9 (26)

Thank you for

your attention

